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We present numerical evidence supporting the validity of the Gallavotti–Cohen fluctuation theorem applied
to the driven Lorentz gas with Nosé–Hoover thermostating. It is moreover argued that the asymptotic form of
the fluctuation formula is independent of the amplitude of the driving force in the limit where it is small.
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Over the past decade, different versions of fluctuation for-
mulas have been the focus of a number of publications in the
field of nonequilibrium statistical physics. In particular, dis-
sipative deterministic dynamical systems with time-reversal
symmetry have attracted some attention as potential candi-
dates to model externally driven systems with a thermostat-
ing mechanism �1–3�. Two distinct results have been pro-
posed, which, in the context of isokinetic thermostats, both
characterize the fluctuations of entropy production. One, due
to Evans and Searles �2�, is usually referred to as transient
fluctuation theorem, while the other, due to Gallavotti and
Cohen �3�, is simply known as the fluctuation theorem. The
former addresses the fluctuations of the work done by the
external forcing on the system, and the latter the fluctuations
of the phase space contraction rate of nonequilibrium station-
ary states. It has been rigorously proved in the context of
Anosov systems �3�.

To be definite, consider the externally driven periodic
Lorentz gas with Gaussian thermostating �4�. The trajectory
of a particle in between elastic collisions is described by the
equation ṗ=E−�p, where �=E ·p / p2 is a reversible damp-
ing mechanism that acts so as to keep the kinetic-energy
constant. �, the phase-space contraction rate for this system
is, as seen from its expression, equal to the work done on the
particle divided by the constant temperature. Thus the work
done on the particle is exactly compensated by the heat dis-
sipation. In other words, work and heat dissipation statistics
are identical for this system.

Dolowschiák and Kovács �5� recently made the observa-
tion that work and phase-space contraction rate fluctuations
behave very differently for the externally driven Lorentz gas
with Nosé–Hoover thermostating. On the one hand, the work
fluctuations, whether large or small, obey the Evans–Searles
formula, in agreement with similar observations made for
other systems �6,7�. On the other hand, the authors observed
that the phase-space contraction rate fluctuations rapidly
saturate. Moreover, no observation of a linear regime of fluc-
tuations in a limited range was reported.

The Nosé-Hoover thermostated Lorentz gas on a periodic
lattice has phase-space coordinates �= �q ,p ,��. Here q and
p, respectively, denote the position and momentum of the
particle, and � is the variable associated with the thermal

reservoir. Between two elastic collisions, the dynamics is
specified by the equations

q̇ = p ,

ṗ = E − �p ,

�̇ = �resp
−2 �p2/�2T� − 1� . �1�

Here E denotes the external field, �resp the relaxation time of
the thermostat, and T the temperature �8�.

An essential difference between the Gaussian and Nosé–
Hoover thermostated Lorentz gases is that the phase-space of
the former is compact. The fluctuation theorem �3� can thus
be applied to the Gaussian thermostated Lorentz gas as
though it were Anosov �9�. For the Nosé–Hoover thermo-
stated Lorentz gas, the situation is different in that the phase-
space contraction rate fluctuations are unbounded. In that
case, for large fluctuations, one expects a much larger prob-
ability of positive phase-space contraction rate fluctuations.

Nevertheless, an appropriate modification of the fluctua-
tion theorem was given in �10�. Thus consider a time-
reversible dissipative system with an average phase-space
contraction rate ������=�+�0 and assume this system veri-
fies the chaotic hypothesis. In a language similar to that used
in �5�, the statement of the fluctuation theorem for the dimen-
sionless contraction amplitude p is that there exists a finite
number 1� p*	
, so that

lim
�→


1

�
log

P��p�
P��− p�

= p�+, �p� 	 p*, �2�

where P��p� denotes the probability of observing, over a
time interval �, a fluctuation of the phase-space contraction
rate ����= p�+. In particular, thinking about the external driv-
ing parameter in the Lorentz gas, the above result should be
independent of its amplitude ��E��0�.

We argue the driven periodic Lorentz gas with Nosé-
Hoover thermostating considered in �5� verifies the fluctua-
tion relation Eq. �2�; although �5� correctly pointed out the
phase-space contraction rate fluctuations are bounded for
large fluctuations, their measurements do not point to the
violation of Eq. �2�. Here we present evidence that the Lor-
entz gas with Nosé–Hoover thermostating has fluctuations of
the phase-space contraction rate which are entirely consistent
with the statement above, showing both saturation for large*Electronic address: thomas.gilbert@ulb.ac.be
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fluctuations and linear behavior for small fluctuations.
As noted in �10�, the phase-space contraction rate for this

system has the form

���� = �0��� +
1

T

d

dt
H , �3�

where �0���=E ·p /T is the quantity relevant to the Evans–
Searles fluctuation formula. Here H= p2 /2+T�resp

2 �2. Follow-
ing the discussion in �10�, one can derive the distribution of
� in terms of that of �0. This was first done in �11� in the
framework of a Brownian particle dragged through water by
a moving potential. In that case, �0 has Gaussian fluctuations
and one can derive the asymptotic form of the right-hand
side �RHS� of Eq. �2�,

lim
�→


1

�
log

P��p�
P��− p�

= f�p��+, �4�

where

f�p� = �p , 0 � p 	 1,

p − �p − 1�2/4, 1 � p 	 3,

2, p � 3.
	 �5�

For negative p, f�p� is odd, f�−p�=−f�p�.
According to �5�, the fluctuations of the time averages of

�0 for the Nosé–Hoover Lorentz gas are Gaussian �12�,
which, given that the kinetic-energy probability distribution
is canonical in the presence of the Nosé–Hoover thermostat,
entitles us to use the result of �11�, Eqs. �4� and �5�. We
present in Figs. 1 and 2 the results of numerical simulations
on a hexagonal lattice with intercell distance unity and disk
radius 0.44 �consistent with the finite horizon condition�.
That is, we take the fundamental lattice translation vectors to
be �1, 0� and �1/2 ,
3/2�. Two different values of the exter-
nal field are considered, both along the x axis, E= �0.1,0�
and E= �0.5,0�. The numerical integration was performed
using an algorithm similar to that used in �13�. As seen from
the figures, the numerical data is entirely consistent with Eq.
�2�. Indeed, as times become large, the small fluctuation am-
plitudes have a linear slope which approaches asymptotically
the value given by the RHS of Eq. �2�. The data are com-
pared to the prediction in Eqs. �4� and �5� and show a rather

FIG. 1. Probability density function �above� and verification of
Eq. �2� �below� for different time averages, as indicated in the leg-
end. The parameters are set to E= �0.1,0�, T=1/2, and �resp=1. The
average phase-space contraction rate �2��=3.25�10−3 was mea-
sured over a total of �3�108 collisions. The thick solid curve
corresponds to the prediction in Eqs. �4� and �5�.

FIG. 2. The same as Fig. 1 for E= �0.5,0�. The average phase-
space contraction rate �2��=7.62�10−2 was measured over a total
of �3�108 collisions.
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good agreement, albeit f�p�=2 seems to slightly overesti-
mate the saturation level. As illustrated on the left panel of
Fig. 3, this apparent discrepancy is only a finite-time correc-
tion, expected to be O�1/T� �14�. Likewise, the right panel
of Fig. 3 shows that the slope in the linear regime of fluc-
tuations approaches the predicted asymptotic value as aver-
age lengths increase. Figures 1 and 2 moreover show the
linear regime of fluctuations persists irrespective of the
strength of the driving field. That is to say, the field strength
is relevant to the asymptotic regime only through �+, which
is quadratic in the field strength, consistent with Eqs. �4� and

�5�. Similar results were obtained for field values as low as
E= �0.05,0�, the main difficulty being that the length of the
time averages in Eq. �2� needs to be increased significantly in
order for the slope to converge to the asymptotic value pre-
dicted by Eq. �2�.

In summary, the driven periodic Lorentz gas with Nosé–
Hoover thermostating provides a simple example of a fully
deterministic model whose work and phase-space contrac-
tion rate fluctuations obey relations similar to those found in
�11� for the work and heat fluctuations of a Brownian particle
in a potential well. Similar results were obtained in �15� for
the nonequilibrium fluctuations of a RC circuit. This suggests
an identification between phase-space contraction rate and
heat dissipation in this framework. The numerical evidence
we presented is entirely consistent with the phase-space con-
traction rate fluctuation theorem as stated in �10�. The sharp
constrast between this observation and the conclusion drawn
by �5� �similar claims can be found in �7��, that the fluctua-
tion theorem does not hold if the driving is small, can be
attributed to two reasons: �i� these authors did not consider
properly the saturation of the fluctuation at larger p� p*, and
�ii� they did not run the simulation long enough to observe
the small but clear linear region at p	 p*. The small devia-
tions between our data and the form predicted by Eqs. �4�
and �5� should be attributed to finite-time corrections. We
hope to further report on this issue in a future publication.
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FIG. 3. Height of saturation measured at p=6 �for times T
=100, . . . ,750� �left�, and slope measured about p=0 vs 1/T of the
curves shown in the bottom panel of Fig. 1 for the external forcing
E= �0.1,0�. The vertical coordinates are renormalized to the
asymptotic values predicted by Eq. �5�. Both curves can be linearly
extrapolated to 1 as T→
. These data confirm that O�1/T� correc-
tions affect the finite-time measurements.
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